NAVSYS

GNSS-based Real-time Positioning

INVESTOR RELATIONS

What level of precision can we truly expect from GPS as we know it?

Business area - 1) S/W

RTK-OMEGA CM accuracy

- Enabling centimeter-level positioning data on smart devices through an app(lane-detector), without the need for additional hardware
- \checkmark Applicable to autonomous driving, HD mapping, and shared mobility industries.

1-1) Market Trends in Location Information Services

- ✓ The location accuracy of smartphones is 5~10m on open roads and over 20~100m in urban areas, leading to significant errors.
- ✓ To improve the GNSS location precision of smartphones, adding various devices causes inconvenience for users.
- ✓ While the demand for **mobility services** is increasing, smartphone-based location information remains limited in its usage.

<Smartphone Positioning Accuracy>

1-2) Collaboration with LG U⁺(Device Free) - App

- \checkmark LG U⁺ has launched the 'U⁺ Ultra-Precision Positioning Project,' cm level
- ✓ Autonomous driving, HD maps, drones & mobility
- ✓ 200 reference stations have been established
- ✓ The lack of technology imposes limitations on the scalability of the business

- ✓ Currently developing an App (experimental stage) based on RTK-OMEGA technology to provide cm level precision
- \checkmark Aiming for **cm level** precision using LG U⁺ &
 - National Geographic Information Institution reference stations
- ✓ No additional devices beyond mobile devices are required

Centimeter-level

RTK-OMEGA

NAVSYS

Inside the lane

1-3) Lane-detector (Device Free) - App

RAVSYS TECHNOLOGY INC

- ✓ Daily average driving distance: 50 miles
- ✓ Average fuel efficiency: 25 MPG (25 miles per gallon)
- ✓ Fuel price: \$5.00/gallon

< Time and Cost Comparison (One vehicle) >

Category		Without Optimal Routing	Difference
Annual Driving Time	304.05 hours	319.35 hours	15.3hrs additional
Annual Fuel Cost	\$3,650.00	\$3,832.50	\$182.5 additional

< Nevada's 2.7 million vehicles >

\$493 million	CO ₂ 1.4 billion pounds

* Fact of the Week #1332, U.S Dept of Energy

Business area - 2) Natural disaster & Infrastructure

RTK-OMEGA + *mmTR*[®]FILTERING mm accuracy

✓ **RTK-OMEGA** technology is applied to public infrastructure and areas prone to natural disasters, providing millimeter-level precision Infrastructure ✓ Real-time displacement data can be monitored through the web-based monitoring system, NetVu **Natural Disaster**

2-1) Product Development Status

<Patents>

#	Classification	Legal Applications	Filling Country	Status	Registration Number	Subject
1	Patent	Navsys	South Korea	Registration	102458817	High-Performance, Embedded Multi-GNSS Receiver
2	Patent	Navsys	South Korea	Registration	102480741	GNSS Reference Station Position Change Monitoring System
3	Patent	Navsys	South Korea	Registration	102538541	Multimode GNSS Reference Station System
4	Patent	Don Kim	United States	Registration	8818568 B2	Satellite-based automatic steering system

2-2) GNSS system

- ✓ mmTR[®] S Receiver enables precise displacement measurements within 1mm horizontally and 2mm vertically at frequencies of up to 100Hz
- ✓ Using displacement data, it is capable of simultaneously measuring structural vibration frequencies within 20Hz
- ✓ A real-time monitoring solution through the *mmTR*[®] *NetVu* system, designed with user convenience

2-3) Reference in South Korea

Han River

- ✓ Seoul City Testbed Project (8 units)
- ✓ Displacement monitoring on Gayang Bridge (6 units)
- ✓ Seoul City Road Maintenance
 Platform Technical Service (4 units)

Cut slope early warning system

- ✓ 160 observation and reference stations installed
- ✓ Monitoring of landslide risks on slopes
- ✓ Operated by the Ministry of Land, Infrastructure and Transport

Railroad facility monitoring

- ✓ Seowonju~Hoengseong & Moongyeong~Icheon
- ✓ Displacement monitoring for collapse risks in KTX operational sections
- ✓ Operated by Korea Railroad

<KTX tunnel>

Construction

- ✓ Shape monitoring during the construction period of bridge
- ✓ Providing accurate displacement data up to 20Hz

<Top of the bridge>

2-4) Cost-effectiveness

Traditional Method

✓ Conducts regular inspections 2 to 3 times a year
 ✓ \$3,000 per 100 meters of bridge & minimum of 10 experts

Navsys System

The number of receivers varies depending on the length
 Real-time monitoring with a single monitor

<bridge costs="" inspection="" safety=""></bridge>				
	Length	Cost		
Magok Bridge	2,930m	\$3,000*30 = <mark>\$9,000</mark> (3km)		

	Price pre unit	Cost	
4 Receivers	\$6,300	\$25,200	
	168w	121kWh/month	
4 Receivers	<mark>\$6</mark> (60kWh)/m	<mark>\$13</mark> (62kWh)/m	
	\$228/yr		

* Based on the Ministry of Land, Infrastructure, and Transport's periodic safety inspection data

Navsys Proprietary Tech

✓ Navsys possesses core technologies for RTK, PPP & mmTR Filtering (the only company in Korea)

- ✓ Provides static precision of 1mm Horizontal & 2mm Vertical and dynamic precision of < 10cm
- ✓ Developing software applicable to various RTK devices and apps based on essential core technologies for improving positional accuracy

GNSS RTK Engine

(OMEGA : Optimal Method for Estimating GNSS Ambiguities)

1. Ambiguity resolution algorithm

- 2. Computational efficiency
- A few milliseconds CPU processing time
- 100Hz output rate using

GNSS PPP Engine (Measurement Filtering PPP)

- 1. Measurement filtering-based PPP technique
- Removes any constant error and bias

Simplifies conventional PPP approaches
Positioning accuracy: ≤1 dm(3drms) within
30min

<PPP Performance>

mmTR Filtering

1. Navsys's proprietary filtering algorithms

- Measurement domain filter (noise/error reduction)
- Position domain filter (for trend extraction)
- Parallel processing for optimal solutions

<Navsys Static Monitoring Precision>

Technological Competitiveness

 $\checkmark\,$ Performance: Superior convergence speed and response

time compared to competitors

Trimble & Leica	Navsys
≤1mm(σ)	≤1mm(σ)
≤2mm(σ)	≤2mm(σ)
≤1hr	≤5min

- ✓ Price: S/W Customizing Service and User-Oriented UI
- Convenience: Integration with user systems and technical collaboration possible

Total Addressable Market

GNSS: 270.51 Billion Infrastructure : 2.7 Trillion

Total: 2,970.51 Billion

HD Map: 7.4 Billion Autonomous : 54.6 Billion Drone: 28.00 Billion Smart cities: 151.01 Billion

Total: 241.01 Billion

HD Map

4 Autonomous : 4.4 Billion Autonomous S/W : 1.8 Billion Drone sensor : 1.4 Billion 5G IoT Module : 17.90 Billion

Total: 25.5 Billion

Patents

Team

Don Kim

•

Ph.D / CTO

Year	Institution	Position	Key Responsibilities
2017~2020	KRISO	Visiting Researcher	GNSS Advisory
1999~2016	University of New Brunswick (Canada)	Researcher/Pr ofessor	GNSS Research
1998~1999	University of Maine (US)	Post-Doc Researcher	GNSS Research
1997~1998	Seoul National University Joint Research Institute for Automotive Systems	Special Researcher	Navigation Control Systems Research
1997	Korea Aerospace Research Institute	Senior Researcher	Flight Attitude Control Research

• 5 years of experience in big data and pattern analysis

• 3 years in international technical sales and data analysis

4 years of R&D on ship noise control

- International journal and conference papers: Over 150 GNSS-related publications

	Awards	
2012	CDA Published Paper Award of Excellence	Canada Dam Association, Cnada
2011	ION GNSS Best Presentation Awards	
2008	IEE/ION PLANS Best Track Paper Award	
2007	ION GNSS Best Presentation Awards	The Institute of Navigation, USA
2006	IEEE/ION PLANS Best Track Paper Award	
2004	ION Samuel M Burka Award	

Sungjin Kim CEO, CMO

Period

	-	E		
8	2	U.S.	1	
	14	-	1	
		-	1	

Kyun Huh H/W / Executive Director

R&D of nuclear seismic and shock protection devices

25years Semiconductor Active Vibration Control R&D

Fleid

R&D of noise, vibration and earthquake-resistant technologies

Geumcheol Kim Head of Research Institute

Period	Fleid
16years	DVR R&D
5years	Web software R&D
3years	GNSS software R&D

Jungsik Shin S/W / Dept. Manager

Period	Fleid
17years	GNSS S/W R&D
3years	GNSS RTK service software R&D

Jae Won Analyst / Dept. Manager

Period	Field
5years	Big data and pattern analysis
4years	R&D on Ship noise control R&D
3years	Data analysis & Sales

NAVSYS

Ultra-High Precision GNSS Positioning Technologies

